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We compare two semi-implicit models with topography-following coordinates for
the solution of the shallow water equations. The models are identical in horizontal
representation, but model A applies a vertical finite difference method and model
B a vertical spectral method. Convergence, stability, and performance for different
geometries and parameters are compared. We report our experiences gained in lake
modelling with these models and give some results of simulations of Lake Ammer
in the homogeneous and stratified cases. Different wave phenomena and the basin
wide circulations will be discussed. c© 1999 Academic Press
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1. INTRODUCTION

Recently there have been many approaches to replacing spatially one-dimensional hy-
drodynamical models by three-dimensional models as a management tool for the predic-
tion of water quality in lakes and reservoirs. Due to the fast advance in computational
fluid dynamics there is a wide range of such models between finite difference methods
(FD), spectral methods (SP), finite element methods (FEM), and finite volume methods
(FVM) and combinations thereof [12, 22, 4, 19, 23]. FD models, about which we are con-
cerned in this paper, are generally distinguished by those using Cartesian coordinates and
those using topography-following coordinates. Many models stem from oceanography but
there are others, using professional FEM packages, suited to solving the shallow water
equations.

A precise prediction of water quality is always based on a reliable turbulence closure
and requires stability of the hydrodynamical model over a large range of horizontal and, in
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particular, vertical turbulent diffusivities. The most severe time step limitation arises from
the stability criterion associated with the vertical diffusion terms and may be overcome by
the formulation of (semi-)implicit temporal integration procedures. However, there are still
other effects discussed in this paper that are related to the smaller length scales of a lake
compared to the scales of the ocean that make it a difficult task to economically integrate
the shallow water equations in a lake over several months.

In this paper we shall compare two such models and test their applicability to the cal-
culation of the wind forced response of a lake or a reservoir. Both are based on SPEM by
Haidvogelet al. [12] and Hedstrom [13] but have been slightly modified to suit the special
conditions envisaged by us.

Model A is a semi-implicit generalizedσ -coordinate model and employs a vertical finite
difference technique (see Song and Haidvogel [22]). It has been modified by G¨uting [10],
and a k-ε-closure has been added. However, the specialties of turbulence closure wil not be
discussed here.

Model B is the original semi-spectralσ -coordinate model (SPEM) that has been modified
by Wang and Hutter [26] to allow for a semi-implicit (vertical) time stepping of either
Crank–Nicolson or backward Euler type. In the horizontal direction both models employ
an identical centered FD discretization on a staggered Arakawa grid in connection with a
conformal mapping of the irregular shoreline to a rectangle to achieve higher smoothness
of the horizontal boundary conditions.

The paper is structured as follows: In Section 2 we give a short introduction to both
models and to the boundary- and topography-following coordinate system. In Section 3
we continue with the comparison of the different time-stepping schemes and the nu-
merical representation of the vertical direction. Section 4 then discusses the numerical
particularities in lake modelling compared to those of ocean modelling and some com-
plications arising from the topography-followingσ -coordinate system. In Section 5 we
compare the stability, accuracy, and performance of models A and B for a rectangular
basin and for Lake Ammer, a medium size Alpine lake in southern Germany. The simu-
lation results for Lake Ammer in the homogeneous and in the density stiatified case will
be discussed in Section 6. We will show that both models are able to reproduce iner-
tial, Kelvin, and Poincar´e-type waves. We conclude with a summary and some remarks in
Section 7.

2. MODEL FORMULATION

2.1. The Topography-Following Coordinate System

The equations of motion for a lake or a reservoir can be derived in a standard way from
the Navier–Stokes equations in a rotating system. Invoking the Boussinesq and the Shallow-
Water Assumptions leads, after an appropriate scaling, to the classical hydrostatic primitive
equations (PE) (see, e.g., Hutter [16]).

Common numerical techniques for the solution of the PE employ a Cartesian coordinate
system where the vertical grid size can be easily arranged to allow higher resolution in
regions of strong gradients in the surface layer of a lake (epilimnion) and near the thermocline
(metalimnion).

Since varying topography and sediment exchange processes play a crucial role in lake
modelling we use a model with generalized verticalσ -coordinates (“s-coordinates”) that
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follow the bathymetry and greatly simplify the computation and formulation of the flux
boundary conditions. This coordinate system, introduced first by Song and Haidvogel [22],
consists of the terms

z= hcs+ (h− hc)C(s), Hθ ≡ ∂z

∂s
, −1≤ s ≤ 0, (1)

C(s) = (1− b)
sinh(θs)

sinhθ
+ b

tanh[θ(s+ 1/2)] − tanh((1/2)θ)

2 tanh((1/2)θ)
, (2)

whereθ andb are the surface and bottom control parameters;hc is a constant chosen to be
the minimum depth or a width of the surface or bottom boundary layer in which a higher
resolution is required. The traditionalσ -coordinates, first introduced by Phillips [20] (where
s is proportional toz), can be recovered by letting the parameterθ approach zero. There are
three attractive features of thes-coordinate transformation in lake modelling:

1. A high vertical resolution can be achieved in the epi- and metalimnion by appropriately
choosing the parameterθ even for uniform grid spacing in the computational domain.
This makes it possible to efficiently simulate turbulent mixing processes in the surface
layer.

2. A coarse resolution in the less active bulk (hypolimnion) saves computation time.
3. A higher resolution in the bottom boundary layer can be obtained by an appro-

priate choice of the parameterb, e.g., to resolve processes in the turbulent boundary
layer.

2.2. The Horizontal Curvilinear Coordinates

To sidestep the approximation of an irregular lateral lake boundary by a horizontal Carte-
sian grid and to avoid the interpolation of lateral boundary conditions to the numerical
boundary both models make use of a horizontal conformal mapping. The resulting curvilin-
ear boundary-following coordinate system is able to provide a spatially variable horizontal
grid resolution. We used a software package developed by Wilkin and Hedstrom [27] for
the generation of the two-dimensional orthogonal grid. For lakes that have suitably smooth
boundaries this package provides the metric coefficientsm andn of the conformal mapping
from an irregular lake shoreline to a rectangle.

Let the new coordinates beξ(x, y) andη(x, y); then the relationship of horizontal are
lengths in the mapped and the physical domains is given by

(ds)ξ =
(

1

m

)
dξ, (3)

(ds)η =
(

1

n

)
dη. (4)

After the conformal mapping the PE ins-coordinates can be written, as shown by Arakawa
and Lamb [1] and Kasahara [17], as

Balance of mass:

∂

∂ξ

(
Hθ

n
u

)
+ ∂

∂η

(
Hθ

m
v

)
+ ∂

∂s

(
Hθ

mn
Ä

)
= 0. (5)
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Balance of momentum:

∂

∂t
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)
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∂
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mn
f v

=−Hθ

n

(
∂φ

∂ξ
− ∂φ
∂s
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)
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∂ξ

(
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Fηu
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(
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mn
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)
, (6)
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Balance of energy:

∂
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mn
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(
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n
uT

)
+ ∂
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(
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(
1

mn
Fs

T

)
. (8)

The balance equation for a passive tracer could be formulated in exactly the same form as
the energy equation. The “vertical velocity” ins-coordinates,Ä, is defined as

Ä = 1

Hθ

(
w −mu

∂z

∂ξ
− nv

∂z

∂η

)
. (9)

Hydrostatic pressure balance:

∂φ

∂s
= −

(
Hθgρ

ρ0

)
. (10)

Equation of state:

ρ = ρ(p, T, S). (11)

For the equation of state (11), a representation suggested by B¨uhrer and Amb¨uhl [2] (with
no dependence on depth and salinity) has been used.

The turbulent fluxesF i
ϕ have been formulated by gradient laws. They can be written in

s-coordinates for a representative variableϕ (eitheru, v, or T) as

F ξϕ = D(ϕ)
H m

(
∂ϕ

∂ξ
− Hθ

∂z

∂ξ

∂ϕ

∂s

)
,

Fηϕ = D(ϕ)
H n

(
∂ϕ

∂η
− Hθ

∂z

∂η

∂ϕ

∂s

)
, (12)

Fs
ϕ = −m

∂z

∂ξ
F ξϕ − n

∂z

∂η
Fηϕ + D(ϕ)

V
1

Hθ

∂ϕ

∂s
.
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The free surface enters the problem through the vertical integration of Eqs. (5), (6), and
(7). Assuming that the vertically integrated transport is divergence-free (equivalent to the
rigid-lid assumption) the integrated equations can be combined into one elliptic equation
for the streamfunctionψ (see, e.g., Simons [21]).

Due to the presence of fast barotropic gravity waves, models that do not use a rigid-lid
formulation either employ a mode-splitting technique as described in Song and Haidvogel
[22] or introduce the free surface via an implicit method (see, e.g., Casulli and Cheng [4],
Dukowicz and Smith [6]). Since mixing and convection processes in lakes and reservoirs
are hardly influenced by fast barotropic gravity waves and since the rigid-lid assumption
does not filter any topographic Rossby waves, which do contribute to advection, we decided
to make use of a the rigid-lid formulation.

With the definition of the streamfunctionψ ,

ū = −
(

n

Hθ

)
∂ψ

∂η
,

(13)

v̄ =
(

m

Hθ

)
∂ψ

∂ξ
,

the barotropic part of the problem may be described by

∂

∂t

{(
m

nHθ

)
∂2ψ

∂ξ2
+
(

n

mHθ

)
∂2ψ

∂η2
+
(

m

nHθ

)
∂ψ

∂ξ
+
(

n

mHθ

)
∂ψ

∂η

}
= R̄. (14)

For the exact form of the integrated right hand sideR̄ and details of the derivation see
Güting [10].

In the above equations the following notation, if not defined in the text, has been used:

u, v, w ξ,n, andz components of the velocity
ū, v̄ vertically integrated velocity components
ψ streamfunction of the vertically integrated velocity
T temperature
ρ density
φ dynamic pressure
f Coriolis parameter( f = Äearthsin(lat))
g acceleration due to gravity
ϕ dummy variable, eitheru, v,or T
D(ϕ)

V vertical turbulent difusivity
D(ϕ)

H horizontal turbulent diffusivity

At the bottom (s=−1) and at the surface (s= 0) flux boundary conditions of the form

1

Hθ

D(u)
V
∂u
∂s
= τ , 1

Hθ

D(T)
V
∂T

∂s
= q(T) (15)

have to be satisfied. In our case the normal heat flowsq(T) at all boundaries have been set
equal to zero. We have chosen for the wind shear a quadratic, and for the bottom friction a
linear, relationship of the form

τ surf = ρwindCD|uwind|uwind, (16)

τ btm = ρwaterγhuwater, (17)
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whereCD is the wind drag coefficient andγh is the bottom friction coefficient. At the lateral
model boundaries all fluxes equal zero and no friction has been assumed.

3. NUMERICAL METHOD

3.1. Vertical Discretization

Both models use the same FD discretization in the horizontal direction but they differ
completely in the vertical direction: Model A is based on a centered FD method, whereas
model B uses Chebyshev polynomialsPk(σ ) to approximate a variableϕ in a spectral way.
The following table shows how the vertical derivatives are expressed in both models:

Model A (FD) Model B (SP)

(s-coordinates) (σ -coordinates)

ϕn = ϕ(σn)≈
∑N

k=0 Pk(σn)ϕ̂k

∂ϕ

∂s

∣∣∣∣
sn

≈ ϕ(sn +1s)− ϕ(sn −1s)

21s

∂ϕ

∂σ

∣∣∣∣
σn

≈ ∂Pk(σn)

∂σ
ϕ̂k

= RnkF−1
kl ϕl =Cnlϕl

with: Fnk= Pk(σn)

and:Rnk= ∂Pk(σn)

∂σ

In model B the ˆϕk are the polynomial coefficients that are recovered from the collocation
point valuesϕk by a linear matrix transformation. The vertical collocation pointsσn in the
spectral method are chosen to be the positions of extrema of the highest order Chebyshev
polynomial leading to a higher resolution near the top and the bottom. In contrast, model
A uses evenly spaced, centered finite differences. In this case a higher resolution near the
top and the bottom can only be achieved by the use of the nonlinears-coordinates with the
control parametersθ andb.

It is clear that in model A a vertical derivative of a variable at the collocation pointn only
depends on the value of the two points next to it but that in model B it involvesall values.
This means that, in general, for each vertical implicit time step in model B a fully occupied
matrix has to be inverted.

3.2. Time Stepping

Using Eq. (12)3, Eqs. (6), (7), and (8) may be rewritten with the generic variableϕ as

Hθ

∂ϕ

∂t
= ∂

∂s

(
1

Hθ

D(ϕ)
V
∂ϕ

∂s

)
︸ ︷︷ ︸

D

− ∂

∂s
(HθÄϕ)+ ∂

∂s

(
−m

∂z

∂ξ
F ξϕ − n

∂z

∂η
Fηϕ
)
+mnR,︸ ︷︷ ︸

R∗

(18)

whereR is the sum of all other terms. The models have been modified1 to allow for two
kinds of semi-implicit time stepping procedures (see Wang and Hutter [26]) to remove the

1 During the modification a bug in the original SPEM5.1 implicit time stepping scheme was discoverd. The
improved code is now available for all users as a new patch level.
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severe stability condition on the vertical diffusion terms due to the very small vertical grid
size near the lateral boundaries. Provided is either a second-order Crank–Nicolson scheme
that, with the abbreviations introduced in Eq. (18), can be written as

Hθϕ
t+1t = Hθϕ

t−1t +1t (Dt+1t − Dt−1t )+ 21tmnR∗,t , (19)

or a simple backward Euler scheme of first order,

Hθϕ
t+1t = Hθϕ

t−1t + 21t Dt+1t + 21tmnR∗,t . (20)

Both schemes perform the implicit time step only for the diffusive termD so as to remove
the most severe time step limitation. The resulting linear system involves the solution of
a tridiagonal matrix for model A and a fully occupied matrix in model B. The time step
for the termR∗ is an explicit Leapfrog scheme. Thus furthers-derivatives arising from
the vertical advection term (the first term inR∗) and the flux corrections induced by the
s-coordinates (second term) will be treated explicitly. For a very small vertical grid size
these terms may influence the stability. The same is true for a very small horizontal grid
size when the maximum time step is delimited by the stability criterion associated with the
explicit scheme for the horizontal diffusion terms. We will show that both effects play an
important role for stability in our calculations.

4. USING OCEAN MODELS FOR LAKES

Many three-dimensional models used in physical limnology have been designed like
SPEM for the simulation of ocean circulation. SPEM has been successfully applied to
many oceanographical problems but due to the smaller length scales of lakes compared to
the scales of the ocean the model could not be used in limnology until a vertical implicit
time stepping had been implemented. However, even with this semi-implicit time stepping
there are still further effects that are only of peripheral significance in oceanography but
restrict the stability in limnology:

• The influence of the explicit scheme for horizontal diffusion terms on stability. These
terms are treated explicitly in almost all models since an implicit scheme could be performed
only at an extemely high cost.
• The influence of the (explicit) flux correction terms that only appear inσ -coordinate

type models (e.g., the first and second terms on the right hand side of (12)3). An implicit
scheme on these terms could only be performed at a very high cost because they involve
a combination of verticals-derivatives and horizontalξ -, η-derivatives. Wang and Hutter
[25] showed that using an ADI method (with successive implicit time steps in theξ -, η-, and
s-directions) does not suffice in the case of lake simulation. They pointed out that the ADI
method provided even less stability than a semi-implicit scheme in the vertical direction.

In contrast to this, in Cartesian models the flux correction terms do not appear, andall
vertical derivatives may be treated implicitly (see, e.g., Casulli and Cattani [3]).

Figure 1 shows vertical slices of thes-coordinates with different parametersθ used in our
calculations: Thes-coordinate lines are compressed at the lateral model boundaries where
the minimum depth has been set tohmin= 5 m. This leads to a minimum vertical grid size
of only 15 cm forN= 30 collocation points. In our calculations the maximum time step
was reduced by a factor of three to five in the presence of the flux correction terms (e.g.,
the first and second terms on the right hand side of (12)3). However, neglecting these terms
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FIG. 1. Vertical slice atη= 30 (for orientation refer to Fig. 2) showing lines of constants (with θ = 0.001,
corresponding toσ -coordinates, and withθ = 4 andb= 0.8) in Lake Ammer.

would lead to a “horizontal” diffusion along surfaces of constants instead of constantz. Our
calculations showed that this causes only a small error in the barotropic case near regions
of steep topography but a considerable error in the baroclinic (stratified) case.

5. ACCURACY, STABILITY, AND PERFORMANCE

5.1. Error

The convergence of each model and the difference between model A and model B have
been analyzed in terms of a rms error. Since the horizontal discretizations in the two cases
are identical2 we introduce a local volume-weighted rms error for each vertical column of
N data points:

rmsϕloc =
√√√√∑N

k

(
ϕref

k − ϕk
)2
1V ref

k∑N
k ϕ

ref
k 1V ref

k

. (21)

• ϕref
k is the value at the reference collocation pointk for a reference run (i.e., usually a

run with very small grid size or time step)
• ϕk is the value of a run to be compared to the reference run interpolated to the reference

collocation pointk. The interpolation is performed either by linear interpolation (model A)
or by Chebyshev polynomials (model B).
• 1V ref

k is the reference volume assigned to the reference collocation pointk.

A global measure of error may be introduced by defining an area-weighted global rms error
averaged overL ×M horizontal grid points.

rmsϕglob =

√√√√∑L·M
i, j

{(
rmsϕloc

)
i, j

}2
1Ai, j∑L·M

i, j 1Ai, j

, (22)

where1Ai, j are the areas assigned to the horizontal grid points.

2 The horizontal averaging scheme for the Coriolis term was different in the original model B, leading to a
considerable error near some boundaries where the grid was coarse. We used the averaging procedure from model
A for both models.
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FIG. 2. The topography of Lake Ammer (left) and the horizontal orthogonal grid (right).

5.2. Parameters

Model A and model B have been run for both a rectangular basin with constant depth
(12,500× 3000× 40 m) and for Lake Ammer (for the topography and horizontal grid see
Fig. 2). The parameters used for all runs are shown in Table I.

5.3. Stability

To our knowledge the stability of the scheme employed in this model or in similar non-
linear models using coordinate transforms has not been fully explored. Casulli and Cattani

TABLE I

Parameters Common in All Calculations

Parameter Lake Ammer and rect. basin

Drag coefficientCD 1.5× 10−3

Bottom friction coeff.γh 10−3 ms−1

Coriolis parameter 1.08× 10−4 s−1

Windspeed 3 ms−1 from South
Horizontal resolution 25× 65 (see Fig. 2)
Maximum depth 82 m (L. Ammer)

Note.For other parameters see the main text.
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[3] claimed to show stability of their FD method on a Cartesian grid using the von Neumann
method only for a linearized version of the shallow water equations in an infinite domain.
Gal-Chen and Sommerville [8] gave a general derivation of the primitive equations for
topographical coordinates and found by numerical evidence that their scheme was stable
whenever its analogous Cartesian scheme was stable. In a heuristic way they derived bounds
for the time step, the grid size, and the Jacobian of the transformation for stability (see
Gal-Chen and Sommerville [7]). We want to underline our experimental stability analysis
by heuristic arguments in a very similar manner.

Let us recall from Section 4 that, with a vertical implicit time stepping, stability is mainly
affected by the explicit treatment of the horizontal diffusion terms and the flux correction
terms arising from theσ -type coordinates. The stability condition related to the horizontal
diffusion problem is dominated by the properties of an explicit Euler scheme on the typical
terms

∂

∂t

(
Hθ

mn
ϕ

)
= ∂

∂ξ

(
Hθ

n
D(ϕ)

H m
∂ϕ

∂ξ

)
+ ∂

∂η

(
Hθ

m
D(ϕ)

H n
∂ϕ

∂η

)
+ · · ·. (23)

Using the estimates

1

m

∂

∂ξ
≈ ∂

∂x
,

1

n

∂

∂η
≈ ∂

∂y
(24)

and assumingD(ϕ)
H to be constant, the terms (23) can be shown to correspond to the horzion-

tal diffusion problem in Cartesian coordinates

∂ϕ

∂t
= D(ϕ)

H

(
∂2ϕ

∂x2
+ ∂

2ϕ

∂y2

)
. (25)

Hence an explicit Euler scheme for (23) with centered finite differences of comparable grid
spacing in both directions will be subject to the well known stability condition

1tmax= const
(1xmin)

2

2D(ϕ)
H

, (26)

wherexmin denotes the smallest horizontal grid spacing and const is a constant of order 1.
Clearly, such an estimate neglects nonlinear and coupling effects and, moreover, is only
justified if the Jacobian of the transformation is close to 1. However, it shows some aspects
of the relation between the physical and the mapped domain and provides a rough estimate
for the maximum time step. We found that stability cannot always be forced by a very small
diffusivity D, since a minimum of explicit smoothing is always required. In both models
this smoothing can be greatly reduced by choosing the diffusivity in such a way that all
relevant oscillations can still be observed (see Section 6).

Table II shows the maximum possible size of the time step for models A and B in
different situations. With selected numbers of vertical collocation levels the two models
achieve comparable accuracy (see Section 5.4). To check the models for the influence of the
vertical derivatives on stability we observed the variation of the maximum time step with
varying vertical grid spacing. To check for the influence of the horizontal diffusion terms
we varied the horizontal diffusion and observed the change in the maximum time step due
to the stability criterion for the explicit scheme.

Since the rectangular basin has a uniform depth no flux correction terms (first and second
terms on the right hand side of (12)3) are involved and stability can only be related to the
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TABLE II

Stability Performance of Models A (N = 30 Collocation Levels) and B

(N = 6 Collocation Levels) for a Non-stratified Fluid

Max. time step Model A (CN) Model B (CN) Model B (Euler)

Rectangle 1600 s 1800 s 5800 s
Lake Ammer 90 s 180 s 190 s

Note.The diffusivities were set equal toDV = 0.01 m2 s−1 andDH = 0.3 m2 s−1 through-
out the domain. (CN=Crank–Nicolson.)

minimum horizontal grid spacing of1xmin≈ 100 m. The first line in Table II shows that,
as expected, the models have comparable maximum time steps for the same time-stepping
scheme (e.g., Crank–Nicolson). However, with the backward Euler scheme a considerably
larger time step can be achieved, which is assumed to be due to a larger dissipative term
introduced by the Euler scheme. A von Neumann stability analysis of the one-dimensional
diffusion problem shows indeed that the dissipative error of the backward Euler scheme is
always larger than that of the Crank–Nicolson scheme. Since in both cases the amplification
factor for the diffusion problem is real none of the methods exhibits a phase error.

In Lake Ammer the minimum vertical grid size is about 15 cm for the FD model (30
evenly spaced collocation levels) and 30 cm for the spectral model (6 collocation levels,
not evenly spaced) and the minimum horizontal grid size is about 10 m. The second line in
Table II shows the stability performances of both models without the flux correction terms in
the non-stratified case. Due to the small horizontal and vertical grid spacings the maximum
time step is reduced and model B proves to be more stable, almost independently of the time-
stepping scheme used. It is interesting that model A always exhibits some sensitivity of the
maximum time step on a variation of the vertical diffusion, even though both time-stepping
schemes should be unconditionally stable. Apparently, the scheme exhibits the influence
of nonlinear terms and a coupling of the one-dimensional vertical diffusion scheme to the
horizontal discretization.

Table III shows that apart from the above the flux correction terms exert a great influence:
For a vertical resolution ofN= 30 we tested stability for constant vertical diffusivities in
the physically interesting range 0.001 m2 s−1≤ DV ≤ 0.05 m2 s−1. The presence of the
correction terms reduced the time step by a factor of three. ForDH = 1 m2 s−1 stability
could only be achieved for a very small time step of 10 s whereas forDH = 0.1 m2 s−1 all
runs remained stable for a time step of 60 s in the non-stratified case.

The same tests performed in the case of a stratified fluid according to Fig. 8 give a
very different picture. For an acceptable accuracy (corresponding to a vertical resolution of

TABLE III

Stability of Model A for a Series of Test Runs with 0.001 m2

s−1≤DV ≤ 0.05 m2 s−1 in the Non-stratified Case for Different

Values ofDH

DH 60 s 30 s 10 s

1.0 Unstable Unstable Stable
0.3 Unstable Stable Stable
0.1 Stable Stable Stable
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N= 55 in model A, see Fig. 4), stability required a small maximum time step of1t = 10 s.
For an identical problem and time step model B performed stable runs only for a small
window of vertical spectral collocation points betweenN= 30 andN= 40. Plots of the
vertical distribution of some model variables showed that large oscillations of the Chebyshev
polynomals at the bottom of the mixed layer induce instabilities. Obviously the spectral
model B suffers from the inability to represent a stratification common in lakes during the
summer. This fact of course strongly limits the use in lake modelling.

5.4. Accuracy

We compared the convergence of both models by means of the rms error of the velocity
fields according to Eq. (22). The values at the collocation points of model B were interpolated
to the collocation points of model A by Chebyshev polynomials if necessary. The reference
runs had vertical resolutions ofN= 60 in model A andN= 20 in model B; the reference
time step was always 10 s.

From the theory of spectral methods (see, e.g., Gottlieb and Orszag [9]) one would expect a
very fast convergence for model B with an increasing numberN of vertical collocation levels.
For a sufficiently smooth solution the error for the spectral model should decrease faster
than any finite power ofN, whereas for the FD model B it should be proportional toN−2.

As shown in Fig. 3 this behavior is basically corroborated by the numerical models in the
non-stratified case. It also can be seen that the convergence properties for the rectangular
basin and for Lake Ammer are almost identical. The effect of the control parametersθ

andb was small in the non-stratified case (compare FD1 and FD2 in the right panel). As
mentioned in Section 5.3, in the stratified case model B was not able to produce stable runs
over a large range of vertical collocation points and thus convergence could only be certified
by comparing it with that of model A. The behavior of this model is documented in Fig. 4

FIG. 3. Global rms error of the velocity field with increasing numberN of vertical collocation points for the
rectangular basin (left) and for Lake Ammer (right). For the spectral model B (SP) the referenceN (error≡ 0%)
was chosen to be 20, for the finite difference model A (FD1 and FD2) the referenceN was 60. The time step was
10 s, causing only a negligible error. FD1 was a run withθ = 0.001, corresponding to linearσ -coordinates; FD2
was a run withθ = 4, b= 0.8 (refer to Fig. 1).
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FIG. 4. Global rms error of the velocity field in the stratified case according to Fig. 8 with an increasing
number ofN vertical grid points for Lake Ammer. The referenceN was 55. The time step was 10 s.

and it is seen that there are no fundamental differences from the model’s behavior in the
non-stratified case.

From Fig. 3 (right) a vertical minimum resolution ofN= 30 for model A andN= 6 for
model B can be determined for a moderate global error of less than 1%. Clearly, for an
explicit time-stepping scheme model B is superior, if comparable maximum time steps are
assumed for the two models. (In fact model B is always more stable in a non-stratified fluid.)

For an implicit time-stepping scheme convergence with decreasing1t is shown in Fig. 5
(left). Clearly the Crank–Nicolson scheme gives better results because of its quadratic
convergence properties. However, as shown in Table II, the backward Euler scheme is

FIG. 5. Global rms error of the velocity field with decreasing1t in a rectangular basin for model A (FD)
and model B (SP) with either a backward Euler or a Crank–Nicolson (CN) scheme (left). (For the reference run
(error≡ 0%): N= 60 and1t = 10 s). The right panel shows the time required for one time step on a pentium
computer.
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more stable under some conditions and the maximum time step required for stability for
lake simulations is usually so small that moderate accuracy requirements are satisfied with
either scheme. It follows that the time-stepping scheme should be chosen primarily in
conjunction with stability considerations.

Figure 5 (right) shows the time required for one implicit time step on a pentium computer
for both models in the non-stratified case. This picture reveals a great disadvantage of
the spectral model: For each implicit time step, in general, a fully occupied matrix must
be inverted, leading to an integration time that grows quadratically with increasing grid
resolutionN, whereas in the FD model only a tridiagonal matrix has to be inverted. For a
global error of 1% (N= 6 SP,N= 30 FD) the integration CPU time for one time step was
1.1 s for the FD model and 1.5 s for the spectral model. Of course these values depend greatly
on the properties of the linear solver and the machine architecture. The actual calculation
time for a particular simulation depends on both the integration time for one time step and
the maximum time step size, which may be delimited as shown in the above by accuracy
(rectangle) or by stability (Lake Ammer). With a maximum time step for Lake Ammer from
Table II of 190 s for the spectral model and 90 s for the FD model the actual calculation
time for the spectral model is faster by a factor of≈1.5. Clearly, this result is no longer
valid in the stratified case. As discussed in Section 5.3 with model B the minumum number
of vertical collocation points was 30 for a stable run and no economical integration of the
shallow water equations was possible for Lake Ammer.

We want to point out the fact that the above test provides only a rough estimate that
depends on a number of factors like smallest grid size, error requirements, machine archi-
tecture, and solver.

It may seem from the above that, in the non-stratified case, the spectral model B is slightly
superior in stability and accuracy. However, we found that the Chebyshev polynomials show
high sensitivity to the large gradients in the thermocline, leading to instabilities and negative
diffusivities in the k-ε-model and thus violating the entropy inequality (see G¨uting [10]).
This seems to be a crucial disadvantage of the spectral model from a practical point of view.

Having checked the convergence properties of models A and B we compared the two
models. Both models were run with a very high resolution (N= 60 for model A,N= 20 for
model B in the non-stratified case, andN= 30 with stratification) and a very small time step
of 10 s. The values from model B were interpolated to the collocation points of model A by
Chebyshev polynomials. We found that the local rms error, according to Eq. (21), between
the two models was at all points less than 1%. This shows that both models reliably solve
the shallow water equations.

5.5. Conservation Properties

Both models conserve the first moments ofu, v, andT . This is due to a centered dis-
cretization of the conservative form of the shallow water equations as given in Eqs. (5)–(8)
(see, e.g., Hirsch [14, pp. 237–241]). The same argument applies as well to the discretiza-
tion of the vertical advection and diffusion terms in the FD model A, but not to the spectral
vertical representation of model B. In that case conservation of the first moments is achieved
by computing the vertical integral of a typical vertical advection term

Aϕ I =
∫ 0

−1
Aϕ ds, (27)
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where

Aϕ = ∂

∂σ

(
HθÄϕ

mn

)
, ϕ = u, v, T (28)

and then correcting the vertical advection term by

Aϕc = Aϕ −Aϕ I . (29)

Since this scheme has been found to have troublesome side effects (see Hedstrom [13]) the
current correction is based on subtracting a second-order polynomial, which is zero at the
top and the bottom, and has the same vertical integral asAϕ I .

The conservation of mass is obviously satisfied by the boundary conditionψ = const
in Eq. (14), which is identical to stating that there is no overall mass flux through the
boundaries.

6. RESULTS

6.1. Barotropic Response

In this section we consider the response of the homogeneous Lake Ammer to a Heaviside
wind force from South. For the model runs the parameters shown in Table I were used.
The horizontal momentum diffusion was assigned a constant value ofDH = 0.3 m2 s−1,
the vertical momentum diffusion a value ofDV = 0.01 m2 s−1. The models were integrated
over a period of 3 days. Since the equations are subject to the rigid-lid assumption (see
Eq. (14)) no other waves except inertial and topographic waves can exist. The long peri-
ods of topographic waves cannot be recognized in a period of 3 days so that one would
expect only the existence of an inertial oscillation far from the boundaries with a period of
Ti = 2π/ f = 16.16 h (see Hutter [15]).

Figure 6 (left) shows this oscillation, which is damped almost completely after 3 days.
Figure 6 (right) shows the existence of a stationary Ekman layer with the characteristic

FIG. 6. Theu component of the velocity (left) in the middle of L. Ammer (see position label in the upper
right corner) at depths of 3, 5, 10, 25, and 50 m. The wind blows from south with 3 m s−1; there is no density
stratification. The panel on the right shows the vertical velocity profile after 3 days at the same point. Velocity
vectors are drawn every 5 m starting at the surface. Computed by model A.
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FIG. 7. Currents after a 3-day simulation of homogeneous Lake Ammer at depth levels of 0, 10, and 30 m
(from left to right, observe the different scalings). Computed by model A.

clockwise rotation of the velocity vector down to a depth of 40 m. In deeper regions the
flow can be regarded as completely geostrophic.

The steady-state currents for the barotropic case at several depth levels are given in
Fig. 7, which shows the horizontal distribution of the velocity. In accordance with the general
Ekman theory for deep waters (Simons [21]) the currents are dominated by a surface Ekman
drift and an interior geostrophic flow. The mostly geostrophic longshore transport causes
the most striking feature of the field: the nearshore coastal jets at the eastern and western
shores. The vertically integrated transport of the Ekman layer from west to east is balanced
by a weak transverse geostrophic current in the opposite direction.

6.2. Baroclinic Response

During most of the year a temperature stratification prevails in Lake Ammer. In this case
a vertical density profile due to Eq. (11) develops and more types of waves may be excited.
The theory (Hutter [16]) predicts the existence of Kelvin- and Poincar´e-type waves (a brief
decription of those types is given in the Appendix). The integration time was only 3 days;
thus the effects of internal topographic waves (with very long periods) will not be discussed
here. We used the parameters given in Table I and a stratification of temperature and vertical
diffusivity as displayed in Fig. 8.

Figure 9 (top) shows the longshore velocity at the midpoints of the eastern and western
shores as a function of time. From the graphs one of the two main types of waves may be
identified: The “seiching” with the first baroclinic mode of a period ofTk≈ 25 h is caused



FIG. 8. Predefined stratification of vertical turbulent momentum diffusivityDV (left) and the initial (“0 Days”)
and final (“3 Days”) temperature stratification in the middle of Lake Ammer.

FIG. 9. The longshore component of the velocity (top) at the western and eastern shores at the depth levels 3
and 5 m. The bottom panels show the velocity in the middle of the lake at the depth levels 3, 5, 10, 25, and 50 m.
Position labels are shown in the upper right corners of the plots. Computed by model A.

654
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FIG. 10. The vertical component of the velocity at the western and southern shores at different depth levels
shows upwelling. Observe the different scalings. Computed by model A.

by a superposition of two Kelvin-type waves circulating counterclockwise around the basin.
Even though this kind of waves decays exponentially with the distance from the shore the
oscillation can also be recognized in the middle of the lake (see Fig. 9, bottom) since the
lake width is relatively small.

FIG. 11. Currents after 3 days of baroclinic simulation in L. Ammer at depth levels of 0, 10, and 30 m (from
left to right). Computed by model A.
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Evidence of the second, Poincar´e-type waves, can be found in the whole basin. The
lower left panel of Fig. 9 shows an oscillation in the transverse component of the velocity
with a periodTp≈ 3.75 h in the middle of the lake that may be interpreted as a standing
Poincaré-type wave. This oscillation can be found at almost all points of the basin.

The thermocline motion caused by the internal seiching leads to an upwelling at the
southern and western shores and to a downwelling at the opposite shores. The upwelling
can be clearly seen in Fig. 10, which shows a positive vertical velocity at the midpoints of
the southern and western shores.

Horizontal slabs of the velocity profile after 3 days at different depths are given in Fig. 11.
The picture shows that at the surface the velocity distribution deviates little from that of
the barotropic situation. However, because the momentum diffusion increases with depth,
at the first meters the surface flow rotation by the Coriolis force is much weaker and the
flow is mainly in the direction of the wind. Again the development of coastal jets can be
observed (see, e.g., Csanady [5]).

Figure 9 (bottom right) indicates that after 3 days the hypolimnetic oscillation has come
to an end and the thermocline must have tilted sufficiently to set up a hydrostatic pressure
gradient, which just balances the surface stress. At this stage of the motion the hypolimnion
no longer balances the surface flow by a motion in the reverse direction. Thus the motion
changes from a whole basin circulation to two closed vertical gyres, one each in the hy-
polimnion and the epilimnion, and the counterflow occurs in the metalimnion, as displayed
in Fig. 11 (middle).

7. CONCLUSIONS

We compared two methods for the solution of the shallow water equations: a semi-
spectral method and a traditional finite difference method. For a sufficiently fine grid the
results of the two models agreed very well. This can be taken as an indication that each
model reliably solves the primitive equations. We found that due to its very fast convergence
with increasing vertical grid resolution the spectral method was superior in connection with
an explicit time-stepping scheme, but with an implicit scheme, which is always required
in lake modelling, we found the two methods to be comparable in calculation speed in the
non-stratified case. However, due to the high sensitivity of the Chebyshev polynomials to
sharp gradients near the thermocline (leading to instabilities and negative diffusivities in
a k-ε-closure) the use of the spectral method is very restricted in the modelling of lakes
with a strong summer stratification. In addition, the relative simplicity of the code for the
FD model A compared to the code for the spectral model B should be viewed as another
advantage of model A.

We pointed out that thes-coordinates provide a high degree of smoothness at the bound-
aries and thus make it possible to easily impose the boundary conditions and to work with
very small diffusivities in order to observe all important wave types. This may be regarded
as the greatest advantage ofσ -type models over Cartesian models, which have to cope with
a complicated interpolation of the physical boundary condition on the numerical grid, often
leading to singularities near corner points (see Gal-Chen and Sommerville [8]) and spurious
effects like convection and upwelling as described in Veronis [24].

A disadvantage common to allσ -type coordinate systems, however, is the introduction
of additional flux correction terms that cannot be treated implicitly at an acceptable cost
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and thus restrict the maximum time step. Other effects mentioned in Marshallet al. [18]
may play a role in the application of such models. Even thoughσ -type models proved to
be a good choice for the modelling of large lakes (see, e.g., G¨uting and Hutter [11]) we
think that the superiority of one model type over the other can only be certified for special
cases. However, for small lakes that require a very small vertical and horizontal resolution
the application ofσ -type models seems to be somewhat restricted.

APPENDIX: KELVIN AND POINCAR É WAVES

For small to medium size lakes rotational effects in gravity waves are usually manifested
as modifications of the solutions in which the rotation of the Earth is ignored. To demonstrate
this we consider the vertically integrated shallow water equations without friction of the
form

∂ζ

∂t
+
(
∂U

∂x
+ ∂V

∂y

)
= 0, (30)

∂U

∂t
− f V = −gh

∂ζ

∂x
,

∂V

∂t
+ f U = −gh

∂ζ

∂y
, (31)

whereU andV are the vertically averaged velocities andζ is the surface elevation. The
barotropic modes are obtained by settingh equal to the water depth, and the baroclinic
modes of a corresponding two-layer model by setting

h := hi = 1ρ

ρ

h1h2

h1+ h2
, (32)

where1ρ is the density difference between a layer of thicknessh1 above the thermocline
and a layer of thicknessh2 below the thermocline.

For a detailed description of the wave solutions presented below, see, for example, Hutter
[16].

A.1. Kelvin Waves

It is our intention to construct solutions of (30) and (31) that enjoy a transverse variation
of ζ in conformity with the Coriolis term. To this end we consider a half-infinite basin with
constant depth and bounded aty= 0; we seek wave solutions of the form

u = u0h8(y)ei (kx−wt), v := 0, ζ = ζ08(y)e
i (kx−wt), (33)

which satisfy the no-flux condition through the side boundary; a forteriori, it requiresV
to vanish everywhere in the half space. Substituion of (33) into (30) and (31) yields the
dispersion relation

c = cph = ω

k
=
√

gh, (34)

and the solutions

8(y) = exp

{
− f

c
y

}
, ζ0 = c

g
u0. (35)
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These solutions, named in honour of Lord Kelvin, will be modified in the presence of
topography and will be called “Kelvin-type” waves by us.

A.2. Poincaŕe Waves

Kelvin waves have the property that the water particle motion is purely longitudinal.
There are other wave solutions of (30) and (31) that satisfy the boundary conditionV = 0 at
the channel sides; however, they may have nontrivial transverse velocity inside the channel.
EliminatingU andζ from the equations and seeking plane wave solutions forV

v = V0(y)e
i (kx−ωt) (36)

yield the eigenvalue problem

∂2V0

∂y2
+
(
ω2− f 2

gh
− k2

)
V0 = 0, 0≤ y ≤ B (37)

for the distribution ofV across a channel with the boundary conditionsV0= 0 aty= 0 and
y= B (see Hutter [16]). Equations (36) and (37) describe the Poincar´e waves. The solution
of (37) is

V0 = V̄ sin

(
mπ

B
y

)
(38)

with the dispersion relation

k2 = ω2− f 2

ghn
− m2π2

B2
(m= 1, 2, 3, . . . ,n = 0, 1, 2, . . .) (39)

or alternatively

ω2 = f 2+ ghn

(
k2+ m2π2

B2

)
> f 2+ ghn

m2π2

B2
= ω2

cut, (40)

wherehn is the equivalent depth (see Hutter [16]). It is also possible to construct solutions
for the longitudinal velocity component

U =
{
αm sin

(
mπy

B

)
− βm cos

(
mπy

B

)}
ei (kx−ωt+π/2), (41)

where

αm = φkm
ω

k
V̄, βm = −gh

f
φkm

mπ

B f

ω

f
V̄ (42)

and

φkm =
k2+ m2π2

B2

k2+ m2π2

B2
ω2

f 2

. (43)

Modifications of this type of waves in the presence of topography are called “Poincar´e-type”
waves by us.
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