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We compare two semi-implicit models with topography-following coordinates for
the solution of the shallow water equations. The models are identical in horizontal
representation, but model A applies a vertical finite difference method and model
B a vertical spectral method. Convergence, stability, and performance for different
geometries and parameters are compared. We report our experiences gained in lake
modelling with these models and give some results of simulations of Lake Ammer
in the homogeneous and stratified cases. Different wave phenomena and the basin
wide circulations will be discussed. ¢ 1999 Academic Press
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1. INTRODUCTION

Recently there have been many approaches to replacing spatially one-dimensione
drodynamical models by three-dimensional models as a management tool for the pr
tion of water quality in lakes and reservoirs. Due to the fast advance in computatic
fluid dynamics there is a wide range of such models between finite difference mett
(FD), spectral methods (SP), finite element methods (FEM), and finite volume meth
(FVM) and combinations thereof [12, 22, 4, 19, 23]. FD models, about which we are c
cerned in this paper, are generally distinguished by those using Cartesian coordinate
those using topography-following coordinates. Many models stem from oceanography
there are others, using professional FEM packages, suited to solving the shallow v
equations.

A precise prediction of water quality is always based on a reliable turbulence clos
and requires stability of the hydrodynamical model over a large range of horizontal an
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particular, vertical turbulent diffusivities. The most severe time step limitation arises fr
the stability criterion associated with the vertical diffusion terms and may be overcome
the formulation of (semi-)implicit temporal integration procedures. However, there are -
other effects discussed in this paper that are related to the smaller length scales of
compared to the scales of the ocean that make it a difficult task to economically integ
the shallow water equations in a lake over several months.

In this paper we shall compare two such models and test their applicability to the
culation of the wind forced response of a lake or a reservoir. Both are based on SPEI
Haidvogelet al.[12] and Hedstrom [13] but have been slightly modified to suit the spec
conditions envisaged by us.

Model A is a semi-implicit generalized-coordinate model and employs a vertical finite
difference technique (see Song and Haidvogel [22]). It has been modifiedtiygG10],
and a ke-closure has been added. However, the specialties of turbulence closure wil n
discussed here.

Model B is the original semi-spectratcoordinate model (SPEM) that has been modifie
by Wang and Hutter [26] to allow for a semi-implicit (vertical) time stepping of eithe
Crank—Nicolson or backward Euler type. In the horizontal direction both models emg
an identical centered FD discretization on a staggered Arakawa grid in connection w
conformal mapping of the irregular shoreline to a rectangle to achieve higher smooth
of the horizontal boundary conditions.

The paper is structured as follows: In Section 2 we give a short introduction to b
models and to the boundary- and topography-following coordinate system. In Sectic
we continue with the comparison of the different time-stepping schemes and the
merical representation of the vertical direction. Section 4 then discusses the nume
particularities in lake modelling compared to those of ocean modelling and some ¢
plications arising from the topography-following-coordinate system. In Section 5 we
compare the stability, accuracy, and performance of models A and B for a rectang
basin and for Lake Ammer, a medium size Alpine lake in southern Germany. The sil
lation results for Lake Ammer in the homogeneous and in the density stiatified case
be discussed in Section 6. We will show that both models are able to reproduce |
tial, Kelvin, and Poinca-type waves. We conclude with a summary and some remarks
Section 7.

2. MODEL FORMULATION

2.1. The Topography-Following Coordinate System

The equations of motion for a lake or a reservoir can be derived in a standard way 1
the Navier—Stokes equations in a rotating system. Invoking the Boussinesq and the She
Water Assumptions leads, after an appropriate scaling, to the classical hydrostatic prin
equations (PE) (see, e.g., Hutter [16]).

Common numerical techniques for the solution of the PE employ a Cartesian coordi
system where the vertical grid size can be easily arranged to allow higher resolutio
regions of strong gradients inthe surface layer of a lake (epilimnion) and near the thermo
(metalimnion).

Since varying topography and sediment exchange processes play a crucial role in
modelling we use a model with generalized verticatoordinates (§-coordinates”) that
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follow the bathymetry and greatly simplify the computation and formulation of the flt
boundary conditions. This coordinate system, introduced first by Song and Haidvogel |
consists of the terms

0z

z=hs+(h—hoCe, H=-, -1=s=<0, (1)
o sinh(@s) tanhp (s + 1/2)] — tanh((1/2)0)
Ce®=1-b sinhé b 2tanh((1/2)0) ’ 2)

wheref andb are the surface and bottom control parametey$s a constant chosen to be
the minimum depth or a width of the surface or bottom boundary layer in which a higl
resolution is required. The traditionalcoordinates, firstintroduced by Phillips [20] (where
sis proportional ta), can be recovered by letting the paramétapproach zero. There are
three attractive features of tlsecoordinate transformation in lake modelling:

1. Ahighvertical resolution can be achieved in the epi- and metalimnion by appropria
choosing the paramet@r even for uniform grid spacing in the computational domair
This makes it possible to efficiently simulate turbulent mixing processes in the surf
layer.

2. A coarse resolution in the less active bulk (hypolimnion) saves computation time

3. A higher resolution in the bottom boundary layer can be obtained by an apy
priate choice of the parametér e.g., to resolve processes in the turbulent bounda
layer.

2.2. The Horizontal Curvilinear Coordinates

To sidestep the approximation of an irregular lateral lake boundary by a horizontal Ce
sian grid and to avoid the interpolation of lateral boundary conditions to the numer
boundary both models make use of a horizontal conformal mapping. The resulting curv
ear boundary-following coordinate system is able to provide a spatially variable horizo
grid resolution. We used a software package developed by Wilkin and Hedstrom [27]
the generation of the two-dimensional orthogonal grid. For lakes that have suitably sm:
boundaries this package provides the metric coefficimraadn of the conformal mapping
from an irregular lake shoreline to a rectangle.

Let the new coordinates dgXx, y) andn(X, y); then the relationship of horizontal are
lengths in the mapped and the physical domains is given by

(dg) = (%)dg, 3)
(ds), = (i)dn. 4)

After the conformal mapping the PE $rcoordinates can be written, as shown by Arakaw
and Lamb [1] and Kasahara [17], as

Balance of mass:

0 Hg 0 H0 a HG _
) A
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Balance of momentum:
d (H o (H d (H 0 (H
—(Zu)+ —( 2u?) + — —wu )+ — —OQu
at \mn &\ n an\m as
d /1 /1 H
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Balance of energy:
9 [ Hy 9 [ Hy 9 [ Hy 9 [ Hg
— =T —( —uT — [ —vT — —QT
8t<mn >+a§<nu )+an(mv )+8s<mn >
3 (Hy 3 . (1
=—|— — . 8
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The balance equation for a passive tracer could be formulated in exactly the same fol
the energy equation. The “vertical velocity” sacoordinatess?, is defined as

1 0z a0z
Q= — — — —nv— . 9
Ho (“’ Mg ””an) ©
Hydrostatic pressure balance:
0 H
¢=_< 99"). (10)
as 00
Equation of state:
p=ppT,9. (11)

For the equation of state (11), a representation suggestedtmeBiand Amhhl [2] (with
no dependence on depth and salinity) has been used.

The turbulent fluxe§-‘;, have been formulated by gradient laws. They can be written
s-coordinates for a representative variapléeitheru, v, or T) as

d 9z 0

€ IE ds
I 0Z dg
F1=DYn( — — Hy— — 12
e (an 93n35> 42
F$=-m —]—‘f—n—f"+D(“’)ia—¢.

e P ViHe 0
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The free surface enters the problem through the vertical integration of Egs. (5), (6),
(7). Assuming that the vertically integrated transport is divergence-free (equivalent to
rigid-lid assumption) the integrated equations can be combined into one elliptic equa
for the streamfunctiony (see, e.g., Simons [21]).

Due to the presence of fast barotropic gravity waves, models that do not use a rigic
formulation either employ a mode-splitting technique as described in Song and Haidv
[22] or introduce the free surface via an implicit method (see, e.g., Casulli and Cheng
Dukowicz and Smith [6]). Since mixing and convection processes in lakes and resen
are hardly influenced by fast barotropic gravity waves and since the rigid-lid assump
does not filter any topographic Rossby waves, which do contribute to advection, we dec
to make use of a the rigid-lid formulation.

With the definition of the streamfunctiaf,

T (”) A
Hy / 97
— m\ oy
v=\{(—|—,
He / 0§
the barotropic part of the problem may be described by
9 m \ 8%y n o\ a2y m \ dy n o\ oy -
A — == — ) —= — ) — — )= V=R. (14
at{(nHe>asz+<mw>an2+(nHe)as+<mw>an} (4
For the exact form of the integrated right hand sfdeand details of the derivation see

Guting [10].
In the above equations the following notation, if not defined in the text, has been u:

(13)

u,v, w £, n,andzcomponents of the velocity
u,v vertically integrated velocity components
v streamfunction of the vertically integrated velocity
T temperature

0 density

¢ dynamic pressure

f Coriolis parameteff = Qeannsin(lat))

g acceleration due to gravity

10 dummy variable, eithew, v, or T

DY vertical turbulent difusivity

DY horizontal turbulent diffusivity

At the bottom § = —1) and at the surface & 0) flux boundary conditions of the form

1 au 1 aT
pwod _ _ DML g™

=T, 15
Hy V ds Hy vV os (15)

have to be satisfied. In our case the normal heat figWsat all boundaries have been se
equal to zero. We have chosen for the wind shear a quadratic, and for the bottom fricti
linear, relationship of the form

75" = pindCb |Uwind|Uwind, (16)

Tom = PwaterYhUwater, 17
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whereCy is the wind drag coefficient ang is the bottom friction coefficient. At the lateral
model boundaries all fluxes equal zero and no friction has been assumed.

3. NUMERICAL METHOD

3.1. Vertical Discretization

Both models use the same FD discretization in the horizontal direction but they di
completely in the vertical direction: Model A is based on a centered FD method, whel
model B uses Chebyshev polynomi&lgo) to approximate a variablgin a spectral way.
The following table shows how the vertical derivatives are expressed in both models:

Model A (FD) Model B (SP)
(s-coordinates (o-coordinates
on = (00) ~ Y 4o Pu(on)x
g ~ @(Sh + AS) — (S — AS) dp %apk(dn)A
as |, 2As do |, a0 ¢
= RuFa o1 = Crio
with: Fnkx = Px(on)
and:R,; = 0 Py(on)
do

In model B theyi are the polynomial coefficients that are recovered from the collocati
point valuesyy by a linear matrix transformation. The vertical collocation pointsn the
spectral method are chosen to be the positions of extrema of the highest order Cheb
polynomial leading to a higher resolution near the top and the bottom. In contrast, m
A uses evenly spaced, centered finite differences. In this case a higher resolution ne
top and the bottom can only be achieved by the use of the nonbag@ordinates with the
control parameterg andb.

Itis clear that in modeA a vertical derivative of a variable at the collocation pairanly
depends on the value of the two points next to it but that in model B it invaiteslues.
This means that, in general, for each vertical implicit time step in model B a fully occup
matrix has to be inverted.

3.2. Time Stepping

Using Eq. (123, Egs. (6), (7), and (8) may be rewritten with the generic variatdes
I a 1 _ oo ad ad 0z d9z

Ho— = —( =Dy )| = —(HeQy) + — | —-Mm—F5 —n_—F7 nR, (18
ot as(Hg Vs ) T ast St T g mMae e T g, Te ) T (18)

D R*

whereR is the sum of all other terms. The models have been modifedllow for two
kinds of semi-implicit time stepping procedures (see Wang and Hutter [26]) to remove

1 During the modification a bug in the original SPEM5.1 implicit time stepping scheme was discoverd.
improved code is now available for all users as a new patch level.



644 UMLAUF, WANG, AND HUTTER

severe stability condition on the vertical diffusion terms due to the very small vertical ¢
size near the lateral boundaries. Provided is either a second-order Crank—Nicolson sc
that, with the abbreviations introduced in Eq. (18), can be written as

ng)tJrAt — Heq)tht + At(Dt+At _ thAt) + ZAtmrTR*’t, (19)
or a simple backward Euler scheme of first order,
Hop' ™' = Hop' ™2 + 2AtD"4 4 2AtmnR ™", (20)

Both schemes perform the implicit time step only for the diffusive t&rso as to remove
the most severe time step limitation. The resulting linear system involves the solutiol
a tridiagonal matrix for model A and a fully occupied matrix in model B. The time st
for the termR* is an explicit Leapfrog scheme. Thus furttederivatives arising from
the vertical advection term (the first termRi*) and the flux corrections induced by the
s-coordinates (second term) will be treated explicitly. For a very small vertical grid s
these terms may influence the stability. The same is true for a very small horizontal
size when the maximum time step is delimited by the stability criterion associated with
explicit scheme for the horizontal diffusion terms. We will show that both effects play
important role for stability in our calculations.

4. USING OCEAN MODELS FOR LAKES

Many three-dimensional models used in physical limnology have been designed
SPEM for the simulation of ocean circulation. SPEM has been successfully applie
many oceanographical problems but due to the smaller length scales of lakes compal
the scales of the ocean the model could not be used in limnology until a vertical imp
time stepping had been implemented. However, even with this semi-implicit time stepy
there are still further effects that are only of peripheral significance in oceanography
restrict the stability in limnology:

e The influence of the explicit scheme for horizontal diffusion terms on stability. The
terms are treated explicitly in almost all models since an implicit scheme could be perfor
only at an extemely high cost.

e The influence of the (explicit) flux correction terms that only appear-toordinate
type models (e.g., the first and second terms on the right hand side gf. (A&)implicit
scheme on these terms could only be performed at a very high cost because they in
a combination of verticas-derivatives and horizont#l-, n-derivatives. Wang and Hutter
[25] showed that using an ADI method (with successive implicit time steps i-the, and
s-directions) does not suffice in the case of lake simulation. They pointed out that the
method provided even less stability than a semi-implicit scheme in the vertical directio

In contrast to this, in Cartesian models the flux correction terms do not appeail ant
vertical derivatives may be treated implicitly (see, e.g., Casulli and Cattani [3]).

Figure 1 shows vertical slices of tlsecoordinates with different parametetsised in our

calculations: The-coordinate lines are compressed at the lateral model boundaries wi
the minimum depth has been setig, =5 m. This leads to a minimum vertical grid size
of only 15 cm forN = 30 collocation points. In our calculations the maximum time ste
was reduced by a factor of three to five in the presence of the flux correction terms (
the first and second terms on the right hand side of;j1PJowever, neglecting these terms
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FIG. 1. Vertical slice aty =30 (for orientation refer to Fig. 2) showing lines of constaiftvith 6 =0.001,
corresponding te-coordinates, and with =4 andb = 0.8) in Lake Ammer.

would lead to a “horizontal” diffusion along surfaces of constanstead of constarzt Our
calculations showed that this causes only a small error in the barotropic case near re
of steep topography but a considerable error in the baroclinic (stratified) case.

5. ACCURACY, STABILITY, AND PERFORMANCE

5.1. Error

The convergence of each model and the difference between model A and model B
been analyzed in terms of a rms error. Since the horizontal discretizations in the two ¢
are identical we introduce a local volume-weighted rms error for each vertical column
N data points:

2
Sk (6 — ) A
RN

o ¢if'is the value at the reference collocation pdirior a reference run (i.e., usually a
run with very small grid size or time step)

e ¢ isthe value of a runto be compared to the reference run interpolated to the refer
collocation poink. The interpolation is performed either by linear interpolation (model £
or by Chebyshev polynomials (model B).

e AV/®is the reference volume assigned to the reference collocationkoint

ms,. = (21)

A global measure of error may be introduced by defining an area-weighted global rms ¢
averaged ovet x M horizontal grid points.

S (rmshe), A
ZiL,jMAALJ'

rm%ob = s (22)

whereA A ; are the areas assigned to the horizontal grid points.

2The horizontal averaging scheme for the Coriolis term was different in the original model B, leading 1
considerable error near some boundaries where the grid was coarse. We used the averaging procedure fror
A for both models.
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FIG. 2. The topography of Lake Ammer (left) and the horizontal orthogonal grid (right).

5.2. Parameters

Model A and model B have been run for both a rectangular basin with constant de
(12,500x 3000x 40 m) and for Lake Ammer (for the topography and horizontal grid st
Fig. 2). The parameters used for all runs are shown in Table I.

5.3. Stability

To our knowledge the stability of the scheme employed in this model or in similar nc
linear models using coordinate transforms has not been fully explored. Casulli and Ca

Parameters Common in All Calculations

Parameter

Lake Ammer and rect. basin

Drag coefficienCp
Bottom friction coeff.y,
Coriolis parameter

Windspeed

Horizontal resolution

Maximum depth

15x10°3

103 mst?
D8x 10*s?t
3 md from South
2% 65 (see Fig. 2)
82 m (L. Ammer)

Note.For other parameters see the main text.
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[3] claimed to show stability of their FD method on a Cartesian grid using the von Neum:
method only for a linearized version of the shallow water equations in an infinite dom:
Gal-Chen and Sommerville [8] gave a general derivation of the primitive equations
topographical coordinates and found by numerical evidence that their scheme was <
whenever its analogous Cartesian scheme was stable. In a heuristic way they derived b
for the time step, the grid size, and the Jacobian of the transformation for stability (
Gal-Chen and Sommerville [7]). We want to underline our experimental stability analy
by heuristic arguments in a very similar manner.

Let us recall from Section 4 that, with a vertical implicit time stepping, stability is main
affected by the explicit treatment of the horizontal diffusion terms and the flux correct
terms arising from the -type coordinates. The stability condition related to the horizont
diffusion problem is dominated by the properties of an explicit Euler scheme on the typ

terms
0 Hg 0 Hg (@) 8g0 0 Hg (@) 8<p
()= 2 (Zp¥Yme?) + L (Z2p@nl?) 4. 23
8t<mn(p> ag<n M ) o \m 2 ey ) (23)

Using the estimates

190 ad 10 d

——~ —, —— A — (24)

m non ady

and assumin@)ﬁ‘{’) to be constant, the terms (23) can be shown to correspond to the horz
tal diffusion problem in Cartesian coordinates

d 02 02
a—f — DY (a—x"z’ + a—y“z’) . (25)
Hence an explicit Euler scheme for (23) with centered finite differences of comparable
spacing in both directions will be subject to the well known stability condition
Atmax = consw, (26)
2Dy

wherexnmin, denotes the smallest horizontal grid spacing and const is a constant of ord
Clearly, such an estimate neglects nonlinear and coupling effects and, moreover, is
justified if the Jacobian of the transformation is close to 1. However, it shows some asy
of the relation between the physical and the mapped domain and provides a rough est
for the maximum time step. We found that stability cannot always be forced by a very st
diffusivity D, since a minimum of explicit smoothing is always required. In both mode
this smoothing can be greatly reduced by choosing the diffusivity in such a way that
relevant oscillations can still be observed (see Section 6).

Table Il shows the maximum possible size of the time step for models A and B
different situations. With selected numbers of vertical collocation levels the two moc
achieve comparable accuracy (see Section 5.4). To check the models for the influence
vertical derivatives on stability we observed the variation of the maximum time step v
varying vertical grid spacing. To check for the influence of the horizontal diffusion ter
we varied the horizontal diffusion and observed the change in the maximum time step
to the stability criterion for the explicit scheme.

Since the rectangular basin has a uniform depth no flux correction terms (first and se
terms on the right hand side of (32)pre involved and stability can only be related to th
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TABLE Il
Stability Performance of Models A (N =30 Collocation Levels) and B
(N =6 Collocation Levels) for a Non-stratified Fluid

Max. time step Model A (CN) Model B (CN) Model B (Euler)
Rectangle 1600 s 1800 s 5800 s
Lake Ammer 90s 180s 190 s

Note.The diffusivities were set equal @, = 0.01 n? s * andDy, = 0.3 n? s~* through-
out the domain. (CN:= Crank—Nicolson.)

minimum horizontal grid spacing afxmin &~ 100 m. The first line in Table Il shows that,
as expected, the models have comparable maximum time steps for the same time-ste
scheme (e.g., Crank—Nicolson). However, with the backward Euler scheme a conside
larger time step can be achieved, which is assumed to be due to a larger dissipative
introduced by the Euler scheme. A von Neumann stability analysis of the one-dimensi
diffusion problem shows indeed that the dissipative error of the backward Euler schen
always larger than that of the Crank—Nicolson scheme. Since in both cases the amplific
factor for the diffusion problem is real none of the methods exhibits a phase error.

In Lake Ammer the minimum vertical grid size is about 15 cm for the FD model (:
evenly spaced collocation levels) and 30 cm for the spectral model (6 collocation le\
not evenly spaced) and the minimum horizontal grid size is about 10 m. The second lir
Table Il shows the stability performances of both models without the flux correction term
the non-stratified case. Due to the small horizontal and vertical grid spacings the maxir
time step is reduced and model B proves to be more stable, almostindependently of the
stepping scheme used. Itis interesting that model A always exhibits some sensitivity o
maximum time step on a variation of the vertical diffusion, even though both time-stepr
schemes should be unconditionally stable. Apparently, the scheme exhibits the influ
of nonlinear terms and a coupling of the one-dimensional vertical diffusion scheme to
horizontal discretization.

Table Il shows that apart from the above the flux correction terms exert a great influe
For a vertical resolution oN = 30 we tested stability for constant vertical diffusivities in
the physically interesting range 0.00F 511 < Dy <0.05 n? s1. The presence of the
correction terms reduced the time step by a factor of three Dkpe= 1 n? s~ stability
could only be achieved for a very small time step of 10 s whereaB foe= 0.1 n? s~ alll
runs remained stable for a time step of 60 s in the non-stratified case.

The same tests performed in the case of a stratified fluid according to Fig. 8 gi\
very different picture. For an acceptable accuracy (corresponding to a vertical resolutic

TABLE llI
Stability of Model A for a Series of Test Runs with 0.001 M
s 1 <Dy <0.05 n? st in the Non-stratified Case for Different

Values of Dy

Dy 60s 30s 10s
1.0 Unstable Unstable Stable
0.3 Unstable Stable Stable

0.1 Stable Stable Stable
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N =55 in model A, see Fig. 4), stability required a small maximum time steftef 10 s.
For an identical problem and time step model B performed stable runs only for a st
window of vertical spectral collocation points betweln= 30 andN = 40. Plots of the
vertical distribution of some model variables showed that large oscillations of the Cheby:
polynomals at the bottom of the mixed layer induce instabilities. Obviously the spec
model B suffers from the inability to represent a stratification common in lakes during
summer. This fact of course strongly limits the use in lake modelling.

5.4. Accuracy

We compared the convergence of both models by means of the rms error of the vel
fields accordingto Eq. (22). The values at the collocation points of model B were interpol:
to the collocation points of model A by Chebyshev polynomials if necessary. The refere
runs had vertical resolutions &f = 60 in model A andN = 20 in model B; the reference
time step was always 10 s.

Fromthe theory of spectral methods (see, e.g., Gottlieb and Orszag [9]) one would exf
very fast convergence for model B with an increasing nurhbefvertical collocation levels.
For a sufficiently smooth solution the error for the spectral model should decrease f:
than any finite power o, whereas for the FD model B it should be proportionalte’.

As shown in Fig. 3 this behavior is basically corroborated by the numerical models in
non-stratified case. It also can be seen that the convergence properties for the recta
basin and for Lake Ammer are almost identical. The effect of the control parangete
andb was small in the non-stratified case (compare FD1 and FD2 in the right panel).
mentioned in Section 5.3, in the stratified case model B was not able to produce stable
over a large range of vertical collocation points and thus convergence could only be cert
by comparing it with that of model A. The behavior of this model is documented in Fig

N convergence (rectangle) N convergence (Lake Ammer)
4.0 T . T L e e L e e e L s s e e e s e e

VO3

= —
X 2ot X 2
I 5]
o S el
~ ~
— —
W &)

1.0 ¢ 1 1.0

P KL . b i 9 . . . , .

2 10 20 30 40 50 60 ) 10 20 30 40 50 60
N N

FIG. 3. Global rms error of the velocity field with increasing numibéof vertical collocation points for the
rectangular basin (left) and for Lake Ammer (right). For the spectral model B (SP) the refétdjecor= 0%)
was chosen to be 20, for the finite difference model A (FD1 and FD2) the refekém@es 60. The time step was
10 s, causing only a negligible error. FD1 was a run with 0.001, corresponding to linear-coordinates; FD2
was a run withd =4, b=0.8 (refer to Fig. 1).
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N convergence (Lake Ammer)

error [%]

60.

FIG. 4. Global rms error of the velocity field in the stratified case according to Fig. 8 with an increasi
number ofN vertical grid points for Lake Ammer. The referendewas 55. The time step was 10 s.

and it is seen that there are no fundamental differences from the model’s behavior ir
non-stratified case.

From Fig. 3 (right) a vertical minimum resolution 8f= 30 for model A and\ = 6 for
model B can be determined for a moderate global error of less than 1%. Clearly, fo
explicit time-stepping scheme model B is superior, if comparable maximum time steps
assumed for the two models. (In fact model B is always more stable in a non-stratified flt

For an implicit time-stepping scheme convergence with decreastigshown in Fig. 5
(left). Clearly the Crank—Nicolson scheme gives better results because of its quad
convergence properties. However, as shown in Table II, the backward Euler schen

At convergence (rectangle) calculation speed
2.0 T T T T T 2.5 . v ———————————— T
2.0t i
)
— Q
e 25t & 1
w L
S ) &
o £
) =
1.0} .
p L S S S S 5 v Ay
7] 300 600 300 1200 1500 1800 @ 10 20 30 40 50 60
At [s] N

FIG. 5. Global rms error of the velocity field with decreasing in a rectangular basin for model A (FD)
and model B (SP) with either a backward Euler or a Crank—Nicolson (CN) scheme (left). (For the reference
(error=0%): N =60 andAt =10 s). The right panel shows the time required for one time step on a pentit

computer.
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more stable under some conditions and the maximum time step required for stability
lake simulations is usually so small that moderate accuracy requirements are satisfiec
either scheme. It follows that the time-stepping scheme should be chosen primaril
conjunction with stability considerations.

Figure 5 (right) shows the time required for one implicit time step on a pentium compt
for both models in the non-stratified case. This picture reveals a great disadvantac
the spectral model: For each implicit time step, in general, a fully occupied matrix m
be inverted, leading to an integration time that grows quadratically with increasing ¢
resolutionN, whereas in the FD model only a tridiagonal matrix has to be inverted. Fc
global error of 1% N =6 SP,N = 30 FD) the integration CPU time for one time step wa
1.1 sforthe FD modeland 1.5 s for the spectral model. Of course these values depend g
on the properties of the linear solver and the machine architecture. The actual calcul
time for a particular simulation depends on both the integration time for one time step
the maximum time step size, which may be delimited as shown in the above by accu
(rectangle) or by stability (Lake Ammer). With a maximum time step for Lake Ammer fro
Table Il of 190 s for the spectral model and 90 s for the FD model the actual calcula
time for the spectral model is faster by a factor=ef.5. Clearly, this result is no longer
valid in the stratified case. As discussed in Section 5.3 with model B the minumum nun
of vertical collocation points was 30 for a stable run and no economical integration of
shallow water equations was possible for Lake Ammer.

We want to point out the fact that the above test provides only a rough estimate
depends on a number of factors like smallest grid size, error requirements, machine ¢
tecture, and solver.

It may seem from the above that, in the non-stratified case, the spectral model B is sli¢
superior in stability and accuracy. However, we found that the Chebyshev polynomials s
high sensitivity to the large gradients in the thermocline, leading to instabilities and nege
diffusivities in the ke-model and thus violating the entropy inequality (segitg [10]).
This seems to be a crucial disadvantage of the spectral model from a practical point of \

Having checked the convergence properties of models A and B we compared the
models. Both models were run with a very high resolutiin£ 60 for model AN = 20 for
model B in the non-stratified case, aNd= 30 with stratification) and a very small time steg
of 10 s. The values from model B were interpolated to the collocation points of model A
Chebyshev polynomials. We found that the local rms error, according to Eq. (21), betw
the two models was at all points less than 1%. This shows that both models reliably s
the shallow water equations.

5.5. Conservation Properties

Both models conserve the first momentsuofy, andT. This is due to a centered dis-
cretization of the conservative form of the shallow water equations as given in Egs. (5)
(see, e.g., Hirsch [14, pp. 237-241]). The same argument applies as well to the discre
tion of the vertical advection and diffusion terms in the FD model A, but not to the spec
vertical representation of model B. In that case conservation of the first moments is achi
by computing the vertical integral of a typical vertical advection term

0
A(p| :/ A(pdS, 27)
-1
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where

d <H99(p

7 90\ mn

), p=uuvT (28)
and then correcting the vertical advection term by
Ape = Ay — Ay (29)

Since this scheme has been found to have troublesome side effects (see Hedstrom [1.
current correction is based on subtracting a second-order polynomial, which is zero &
top and the bottom, and has the same vertical integral as

The conservation of mass is obviously satisfied by the boundary conditiertonst
in Eg. (14), which is identical to stating that there is no overall mass flux through
boundaries.

6. RESULTS

6.1. Barotropic Response

In this section we consider the response of the homogeneous Lake Ammer to a Heay
wind force from South. For the model runs the parameters shown in Table | were u
The horizontal momentum diffusion was assigned a constant vallg;ef 0.3 n? s72,
the vertical momentum diffusion a value Bf, = 0.01 n? s~. The models were integrated
over a period of 3 days. Since the equations are subject to the rigid-lid assumption
Eqg. (14)) no other waves except inertial and topographic waves can exist. The long |
ods of topographic waves cannot be recognized in a period of 3 days so that one w
expect only the existence of an inertial oscillation far from the boundaries with a perioc
Ti =27 /f =16.16 h (see Hutter [15]).

Figure 6 (left) shows this oscillation, which is damped almost completely after 3 ds
Figure 6 (right) shows the existence of a stationary Ekman layer with the character

u at £=10 and n=30 Ekman spiral after 3.00 days
2.0 A at £=10 and =30

1.5 T ——

" @

~ E 5L ]
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FIG. 6. Theu component of the velocity (left) in the middle of L. Ammer (see position label in the upp
right corner) at depths of 3, 5, 10, 25, and 50 m. The wind blows from south3wib s*; there is no density
stratification. The panel on the right shows the vertical velocity profile after 3 days at the same point. Velc
vectors are drawn eweb m starting at the surface. Computed by model A.
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FIG. 7. Currents after a 3-day simulation of homogeneous Lake Ammer at depth levels of 0, 10, and 3
(from left to right, observe the different scalings). Computed by model A.

clockwise rotation of the velocity vector down to a depth of 40 m. In deeper regions
flow can be regarded as completely geostrophic.

The steady-state currents for the barotropic case at several depth levels are giv
Fig. 7, which shows the horizontal distribution of the velocity. In accordance with the gen
Ekman theory for deep waters (Simons [21]) the currents are dominated by a surface El
drift and an interior geostrophic flow. The mostly geostrophic longshore transport cal
the most striking feature of the field: the nearshore coastal jets at the eastern and we
shores. The vertically integrated transport of the Ekman layer from west to east is bala
by a weak transverse geostrophic current in the opposite direction.

6.2. Baroclinic Response

During most of the year a temperature stratification prevails in Lake Ammer. In this c
a vertical density profile due to Eq. (11) develops and more types of waves may be exc
The theory (Hutter [16]) predicts the existence of Kelvin- and Pom¢gpe waves (a brief
decription of those types is given in the Appendix). The integration time was only 3 de
thus the effects of internal topographic waves (with very long periods) will not be discus
here. We used the parameters given in Table | and a stratification of temperature and ve
diffusivity as displayed in Fig. 8.

Figure 9 (top) shows the longshore velocity at the midpoints of the eastern and we:
shores as a function of time. From the graphs one of the two main types of waves me
identified: The “seiching” with the first baroclinic mode of a period T~ 25 h is caused
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FIG.9. The longshore component of the velocity (top) at the western and eastern shores at the depth le
and 5 m. The bottom panels show the velocity in the middle of the lake at the depth levels 3, 5, 10, 25, and !
Position labels are shown in the upper right corners of the plots. Computed by model A.
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FIG. 10. The vertical component of the velocity at the western and southern shores at different depth l¢
shows upwelling. Observe the different scalings. Computed by model A.

by a superposition of two Kelvin-type waves circulating counterclockwise around the ba
Even though this kind of waves decays exponentially with the distance from the shore
oscillation can also be recognized in the middle of the lake (see Fig. 9, bottom) since
lake width is relatively small.
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FIG. 11. Currents after 3 days of baroclinic simulation in L. Ammer at depth levels of 0, 10, and 30 m (frc
left to right). Computed by model A.
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Evidence of the second, Poineatype waves, can be found in the whole basin. Tt
lower left panel of Fig. 9 shows an oscillation in the transverse component of the velo
with a periodT, ~ 3.75 h in the middle of the lake that may be interpreted as a standi
Poincag-type wave. This oscillation can be found at almost all points of the basin.

The thermocline motion caused by the internal seiching leads to an upwelling at
southern and western shores and to a downwelling at the opposite shores. The upw
can be clearly seen in Fig. 10, which shows a positive vertical velocity at the midpoint:
the southern and western shores.

Horizontal slabs of the velocity profile after 3 days at different depths are given in Fig.
The picture shows that at the surface the velocity distribution deviates little from tha
the barotropic situation. However, because the momentum diffusion increases with de
at the first meters the surface flow rotation by the Coriolis force is much weaker and
flow is mainly in the direction of the wind. Again the development of coastal jets can
observed (see, e.g., Csanady [5]).

Figure 9 (bottom right) indicates that after 3 days the hypolimnetic oscillation has cc
to an end and the thermocline must have tilted sufficiently to set up a hydrostatic pres
gradient, which just balances the surface stress. At this stage of the motion the hypolinr
no longer balances the surface flow by a motion in the reverse direction. Thus the mc
changes from a whole basin circulation to two closed vertical gyres, one each in the
polimnion and the epilimnion, and the counterflow occurs in the metalimnion, as displa
in Fig. 11 (middle).

7. CONCLUSIONS

We compared two methods for the solution of the shallow water equations: a se
spectral method and a traditional finite difference method. For a sufficiently fine grid
results of the two models agreed very well. This can be taken as an indication that
model reliably solves the primitive equations. We found that due to its very fast converge
with increasing vertical grid resolution the spectral method was superior in connection \
an explicit time-stepping scheme, but with an implicit scheme, which is always requi
in lake modelling, we found the two methods to be comparable in calculation speed in
non-stratified case. However, due to the high sensitivity of the Chebyshev polynomial
sharp gradients near the thermocline (leading to instabilities and negative diffusivitie
a k<-closure) the use of the spectral method is very restricted in the modelling of la
with a strong summer stratification. In addition, the relative simplicity of the code for t
FD model A compared to the code for the spectral model B should be viewed as anc
advantage of model A.

We pointed out that the-coordinates provide a high degree of smoothness at the bou
aries and thus make it possible to easily impose the boundary conditions and to work
very small diffusivities in order to observe all important wave types. This may be regar
as the greatest advantagesefype models over Cartesian models, which have to cope wi
a complicated interpolation of the physical boundary condition on the numerical grid, of
leading to singularities near corner points (see Gal-Chen and Sommerville [8]) and spul
effects like convection and upwelling as described in Veronis [24].

A disadvantage common to alttype coordinate systems, however, is the introductic
of additional flux correction terms that cannot be treated implicitly at an acceptable «
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and thus restrict the maximum time step. Other effects mentioned in Maetrall[18]
may play a role in the application of such models. Even thasigippe models proved to
be a good choice for the modelling of large lakes (see, euwtinG and Hutter [11]) we
think that the superiority of one model type over the other can only be certified for spe
cases. However, for small lakes that require a very small vertical and horizontal resolt
the application ob -type models seems to be somewhat restricted.

APPENDIX: KELVIN AND POINCAR E WAVES

For small to medium size lakes rotational effects in gravity waves are usually manife:
as modifications of the solutions in which the rotation of the Earth is ignored. To demonst
this we consider the vertically integrated shallow water equations without friction of -

form
hile au oV
— —+ — ] =0, 30
ot + (ax + 8y> (30)
ou ¢ Y a¢
— — fV=—gh—=>, — 4+ fU = —-gh—=, 31
ot g X at + g ay (31)

whereU andV are the vertically averaged velocities ands the surface elevation. The
barotropic modes are obtained by settmgqual to the water depth, and the baroclini
modes of a corresponding two-layer model by setting

Ap hih
himh =22 12
p hi+hy

(32)

whereAp is the density difference between a layer of thickriesabove the thermocline
and a layer of thickneds, below the thermocline.

For a detailed description of the wave solutions presented below, see, for example, H
[16].

A.1. Kelvin Waves

It is our intention to construct solutions of (30) and (31) that enjoy a transverse varia
of ¢ in conformity with the Coriolis term. To this end we consider a half-infinite basin wi
constant depth and boundedyat 0; we seek wave solutions of the form

U=uhd(y)ed®™  v:=0, ¢ =¢d(y)d*™Y, (33)

which satisfy the no-flux condition through the side boundary; a forteriori, it reqires
to vanish everywhere in the half space. Substituion of (33) into (30) and (31) yields
dispersion relation

C=Cph= % =+/gh, (34)

and the solutions

f
B(y) = exp{—cy} =t (35)
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These solutions, named in honour of Lord Kelvin, will be modified in the presence
topography and will be called “Kelvin-type” waves by us.

A.2. Poincare Waves

Kelvin waves have the property that the water particle motion is purely longitudin
There are other wave solutions of (30) and (31) that satisfy the boundary condiidhat
the channel sides; however, they may have nontrivial transverse velocity inside the cha
EliminatingU and¢ from the equations and seeking plane wave solution¥ for

v = Vo(y)e kb (36)

yield the eigenvalue problem

8%V (wz —f2

2

for the distribution ofv across a channel with the boundary conditivps- 0 aty =0 and
y = B (see Hutter [16]). Equations (36) and (37) describe the Pagneaves. The solution
of (37)is

Vo = Vsin(m—éry> (38)
with the dispersion relation

w?— 2 még?
K ——— — — m=123,...,n=0,1,2, ... 39
ah 52 ( ,2,3,..., .1,2,..0) (39)

or alternatively
2.2

m2m? m
(,()2: f2+ghn(k2+ BZ >> f2+ghnTZ Zw(%utv (40)

whereh, is the equivalent depth (see Hutter [16]). It is also possible to construct soluti
for the longitudinal velocity component

U= {am sin<w> — Bm cos(m> }ei (kx—ot+r/2) (41)
B B
where
w — h mr w —
Om = ¢kmEV, Bm = _gT¢kmﬁ? (42)
and
k2 + ngz
¢km = K2 I manz P (43)

Modifications of this type of waves in the presence of topography are called “Peityqze”
waves by us.
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